1,151 research outputs found

    Hertzsprung Gap Coronae: ASCA Guest Investigator Program

    Get PDF
    The objective was a deep (40 ks) SIS/GIS pointing on the bright stellar X-ray source 31 Comae (G0 III) to record the 1-10 keV spectrum and obtain a lightcurve over the approx. 1 day duration of the observation

    Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of 3D Spectrum Synthesis

    Full text link
    We consider the formation of solar infrared (2-6 micron) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim to refine abundances of the heavy isotopes of carbon (13C) and oxygen (18O,17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R23= 12C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are: R23= 91.4 +/- 1.3 (Rsun= 89.2); and R68= 511 +/- 10 (Rsun= 499), where the uncertainties are 1 sigma and "optimistic." We also obtained R67= 2738 +/- 118 (Rsun= 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R68= 530, R6= 2798), although including both within 2 sigma error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions (CAI) in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance of 603 +/- 9 ppm (relative to hydrogen; 8.78 on the logarithmic H= 12 scale). That the Sun likely is lighter than the Earth, isotopically speaking, removes the necessity to invoke exotic fractionation processes during the early construction of the inner solar system

    A study of the elements copper through uranium in Sirius A: Contributions from STIS and ground-based spectra

    Full text link
    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic mercury-manganese (HgMn) stars. Our primary observational material consists of {\em Hubble Space Telescope} (HSTHST) spectra taken with the Space Telescope Imaging Spectrograph (STIS) in the ASTRAL project. We have also used archival material from the %\citep/{ayr10}. COPERNICUSCOPERNICUS satellite, and from the HSTHST Goddard High-Resolution Spectrograph (GHRS), as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar (CP) stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.Comment: With 6 Figures and 4 Tables; accepted for publication in Ap

    Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    Get PDF
    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.Comment: 90 pages, 19 figures (some with parts "a", "b", etc.); to be published in the Astrophysical Journal Supplement

    Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    Get PDF
    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all of the available GHRS data for alpha Cen A (G2 V) and alpha Cen B (K1 V). We find that the transition region lines of both stars have redshifts almost identical to those observed on the Sun: showing an increase with line formation temperature up to about log T = 5.2 and then a rapid decrease. Using the O IV] lines as density diagnostics, we compute electron densities of log n(sub e) = 9.65 +/- 0.20 and log n(sub e) = 9.50 +/- 0.30 for alpha Cen A and alpha Cen B, respectively
    corecore